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Consider a transitive value ordering of outcomes and lotteries on outcomes,
which satisfies substitutivity of equivalents and obeys “continuity for easy
cases,” i.e., allows compensating risks of small losses by chances of small
improvements. Temkin (2001) has argued that such an ordering must also –
rather counter-intuitively – allow chances of small improvements to com-
pensate risks of huge losses. In this paper, we show that Temkin’s argument
is flawed but that a better proof is possible. However, it is more difficult
to determine what conclusions should be drawn from this result. Contrary
to what Temkin suggests, substitutivity of equivalents is a notoriously
controversial principle. But even in the absence of substitutivity, the counter-
intuitive conclusion is derivable from a strengthened version of continuity
for easy cases. The best move, therefore, might be to question the latter
principle, even in its original simple version: as we argue, continuity for
easy cases gives rise to a sorites.

Larry Temkin has recently argued that the following four principles are
mutually inconsistent: (i) sufficiently large chances of small improvements
can compensate risks of small losses (continuity for easy cases);
(ii) the value ordering of outcomes and lotteries on outcomes is transitive;
(iii) a lottery’s value remains unchanged if one of its possible outcomes is
replaced by an equally good outcome or lottery (substitutivity of equiva-
lents); (iv) no chance of a small improvement, however large, can
compensate an arbitrarily small risk of a huge loss (discontinuity for the
extreme case).

Temkin takes continuity for easy cases and discontinuity for the
extreme case to be highly intuitive assumptions and suggests that the same
applies to the principle of substitution of equivalents. The reader is thus
left with the impression that it is transitivity that should be given up. In this
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paper, we show that Temkin’s inconsistency proof is fatally flawed but that
a better proof can be provided. However, it is more difficult to determine
what conclusions should be drawn from this result. We consider this issue
in the last section. Contrary to what Temkin suggests, substitution of
equivalents is a notoriously controversial principle. But the best move,
as we shall see, might be to question Temkin’s very point of departure:
contrary to appearances, continuity for easy cases probably is the culprit
in this story.

1. THE PROBLEM

Temkin (2001) asks the reader to consider a finite series of outcomes,
o1, . . . , on, in which each element is slightly worse than its immediate
predecessor. The last outcome in this gradually descending sequence is
supposed to be much worse than the one we start with. The sequence
begins with a very satisfactory outcome and it ends up with something
disastrous.

Temkin takes it that the standard decision-theoretic continuity
assumption is satisfied by the outcomes in the sequence that are adjacent
to each other.

Continuity for Easy Cases: For all outcomes oi−1, oi , and oi+1, if oi is
slightly worse than oi−1, and oi+1 is slightly worse than oi , there is
some probability value p, 0 < p < 1, such that oi ≈ (oi−1, p, oi+1).1

Here, “≈” stands for “is equally good as,” and “(oi−1, p, oi+1)” denotes
a binary lottery in which outcome oi−1 is assigned a real-valued probability
p, while the remaining probability 1 − p is assigned to outcome oi+1.
Thus, the assumption states that in each triple of outcomes the second
of which is slightly worse than the first and slightly better than the third,
the intermediate outcome is equally good as some lottery on the outcomes
that flank it from above and from below. In this sense, there is continuity
in the downward movement in the sequence. If each of the steps is small,
none of them involves a radical break. Given an appropriate choice of
probabilities, the risk of ending up with oi+1 instead of oi is compensated
by the chance of an improvement from oi to oi−1.

1 This is the assumption that Temkin actually relies on in his proof (see below). But in the
discussion that precedes the proof, he instead argues for a closely related assumption that
is in one way stronger and in one way weaker, namely:
In each triple of outcomes the second of which is worse than the first [slightly worse or
much worse; this is the strengthening] and the third of which is only slightly worse than
the second, there is a lottery on the first and the third outcome that is at least as good as
[i.e., equally good as or better than; this is the weakening] the intermediate outcome.
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At the same time, we are asked to suppose that the last outcome in
the sequence is so much worse than the outcomes the sequence starts with
that the continuity assumption does not hold for o1, o2, and on.

Discontinuity for the Extreme Case: There is no probability value p such
that o2 ≈ (o1, p, on).

No chance of a slight improvement from o2 to o1 is worth the risk, however
small, of ending up with on instead of o2. In fact, for that reason, not only
does continuity fail for this “extreme case”, but there is no lottery with o1
and on as possible prizes that is at least as good as o2. Letting � stand for
“at least as good as,” we can express this claim as follows:

There is no probability value p < 1 such that o2 � (o1, p, on).

Temkin’s example of a sequence o1, . . . , on involves a gradually
decreasing series of alternative incomes. The series starts with the agent’s
income exceeding $1 million per year and ends with his income being
equal to zero. For each outcome oi in the series, the agent earns in oi+1
just one dollar less than in oi . Temkin takes it that our intuitions about
this sequence are as follows: (i) A small risk of losing a dollar can always
be compensated, by an appropriately large chance of gaining an extra
dollar. (ii) But it is different with large losses. If you are well off, a chance
of gaining an extra dollar, however large, is not worth the risk, however
small, of losing everything.

That a chance of a small improvement is not worth the risk, however
small, of a large loss is, of course, a standard objection to the unrestricted
continuity assumption: it is mentioned in practically any textbook in
decision theory.2 One typical answer to this objection is that if the risk
of a large loss is very small, say one in 101000, taking it for the sake of a
small improvement may well not be unreasonable (cf. Resnik 1987: 103).
This may so, but the question is rather whether refusing to take such a
risk, however small, on the grounds that it is not worth taking, must be
unreasonable. If it needn’t be, the objection to continuity as a requirement
of rationality still stands.

Another typical reaction is that, in our actual behavior, we do in fact
regularly accept small risks of catastrophic outcomes, for the sake of small
gains. We do it each time we cross a heavily trafficked street to hunt for a
bargain, or when we don’t bother to put on the safety belt while driving.
But, again, the question is rather whether those of us who refuse to take
such risks, because they are in their view not worth taking, are being
unreasonable.

2 See, for example, Luce and Raiffa (1957: 27) or Resnik (1987: 103). Temkin himself refers
in this connection to Peter Vallentyne’s discussion of John Broome’s Weighing Goods in
Vallentyne (1993).
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To be sure, if we repeatedly refuse taking microscopically small risks of
this kind for the sake of small gains, then, in the long run, we may forgo
very large gains (one dollar + one dollar + one dollar + . . . ) that we
could have obtained at the expense of accumulated microscopically small
risks of very large losses.3 Note that these accumulated tiny risks might
still add up to a very small total risk. This is a challenging objection, but
a reply to it can be that what is reasonable as an isolated decision may
not be reasonable as a general policy. A decision in a single case need not
be irrational just because it instantiates a general policy that it would be
irrational for us to adopt.

It might seem, therefore, that it is not unreasonable to refuse to take any
risk of a very large loss, however small that risk might be, for the sake of a
small improvement. But then it is not unreasonable to reject continuity for
an extreme case like this. Temkin argues, however, that continuity for the
extreme case follows from continuity for easy cases, provided we assume
two additional principles: the Principle of Substitution of Equivalents
(PSE) and the Transitivity of At-Least-as Good-As (Tr �). As is well
known, both these principles, along with the unrestricted continuity, are
fundamental to expected utility theory (in the von Neumann–Morgenstern
version). PSE states that for any two outcomes or lotteries, x and y, and for
any lottery l with x as a possible prize, if x and y are equally good, then
replacing x with y in l results in a lottery that is equally as good as l. Tr �
states that for any outcomes or lotteries x, y and z, if y is at least as good as
x and z is at least as good as y, then z is at least as good as x.

PSE: For all outcomes or lotteries x, y, z and all probability values p,

if x ≈ y, then (x, p, z) ≈ (y, p, z) and (z, p, x) ≈ (z, p, y).4

Tr � : For all outcomes or lotteries x, y, z, if x� y and y�z, then x�z.

Without saying as much, Temkin leaves the reader with an impression
that something must be wrong with the transitivity principle.5 For
apart from transitivity we only need PSE to derive the counter-intuitive
continuity for the extreme case from the intuitive assumption that
continuity holds for easy cases. But, “PSE is difficult to deny. Indeed,

3 We owe this reminder to Magnus Jiborn.
4 PSE is entailed by the so-called Strong Independence Axiom, which states that, for all

outcomes or lotteries x, y, z and all probability values p, 0 < p < 1,

x � y if and only if (x, p, z) � (y, p, z), if and only if (z, p, x) �(z, p, y).

5 This impression is strengthened when one takes into consideration that Temkin has been
criticizing transitivity assumptions for many years now, using different arguments. See his
(1987), (1996), (1999) and (2000).
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perhaps even more than the axiom of transitivity, PSE may appear to be a
basic principle of logic and mathematics” (Temkin 2001: 96).

Contrary to what Temkin suggests, PSE is not that difficult to deny. We
shall say more about this later. For now, however, it is sufficient to point
out that Temkin misleadingly makes PSE look like a logical axiom – more
precisely, like the axiom of substitutivity of co-extensive expressions,
salva veritate – when he informally presents it as follows: “Roughly, this
principle [= PSE] requires that if x = y, then x and y are interchangeable
in the formulas in which they occur. Note, outside of modal or intensional
contexts, PSE holds for all x and y” (ibid.: 96).

Needless to say, this is not what PSE requires. PSE is not
about substitutions of equivalent expressions in formulas. It is about
substitutions of equivalent prizes in lotteries. What it does require is that
if a prize x is equally good as a prize y, then interchanging x for y in any
lottery results in a lottery that is equally good.

2. TEMKIN’S PROOF

What is more worrying, however, is that Temkin’s proof is fatally flawed.
As we have seen, he wants to show that PSE and the transitivity principle
allow us to derive continuity for the extreme case from continuity for
easy cases. Now, in his proof, he assumes (i) the existence of a utility
function V that assigns real numbers to outcomes and lotteries and thereby
represents their betterness ordering: The higher the number, the better the
outcome/lottery. Furthermore, he assumes (ii) that the utility of a lottery
equals its expected utility. These two assumptions show up when he takes
continuity for easy cases to entail that for each triple oi−1, oi and oi+1
of consecutive outcomes in a gradually descending series there is some
probability p such that V(oi ) = pV(oi−1) + (1 − p)V(oi+1).6 Thus, if o2 and
o3 are equally as good as (o1, p, o3) and (o2, q , o4), respectively, Temkin
takes this to mean (cf. ibid.: 99) that for some probabilities p and q,

(i) V(o2) = pV(o1) + (1 − p)V(o3),

and

(ii) V(o3) = q V(o2) + (1 − q )V(o4).

He then uses PSE to replace V(o3) in (i) by q V(o2) + (1 − q )V(o4).7 The proof
continues by such substitutions. Now, obviously, making the auxiliary

6 By continuity for easy cases, there is some probability p such that oi ≈ (oi−1, p, oi+1).
Consequently, if the existence of a utility function V is assumed, V(oi ) = V(oi−1, p, oi+1).
Furthermore, if the utility of a lottery is its expected utility, V(oi−1, p, oi+1) = pV(oi−1) +
(1 − p)V(oi+1). Therefore, V(oi ) = pV(oi−1) + (1 − p)V(oi+1).

7 Note that there is no need to rely on PSE for this step. Replacing in (i) the left-hand side of
equation (ii) by its right-hand side is just a matter of algebra.
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assumptions such as (i) and (ii) in the course of the proof of continuity for
the extreme case is misconceived. For these assumptions themselves entail
what is to be proved. More precisely, if (i) the utilities of outcomes and
lotteries are representable by real numbers, and if (ii) the utility of a lottery
coincides with its expected utility, then continuity trivially holds for all
cases, extreme or not. This immediately follows from the mathematical
fact that any real number lying between two real numbers is representable
as their linear combination. In other words:

For any reals r, r ′ and r ′′, if r ′ > r > r ′′, then for some p, 0 < p < 1,
r = pr ′ + (1 − p)r ′′.8

If, therefore, as required by (i), there exists a function V from outcomes
and lotteries to real numbers that represents the betterness ordering, and
if V(o ′) > V(o) > V(o ′′), then there must exist some p, 0 < p < 1, such that

V(o) = pV(o ′) + (1 − p)V(o ′′).9

Consequently, if – as required by (ii) – the utility of a lottery (o ′, p, o ′′),
V(o ′, p, o ′′), equals its expected utility, pV(o ′) + (1 − p)V(o ′′), it follows
that V(o) = V(o ′, p, o ′′). Therefore, o and (o ′, p, o ′′) are equally good. Thus,
continuity trivially follows.

3. A BETTER PROOF

Since continuity is one of the axioms of expected utility theory, assuming
that very theory as an auxiliary assumption in a proof of continuity is worse
than question-begging. Should we then simply consign Temkin’s idea to
the dustbin? That would be rash. There is an important kernel of truth in
his paper that is worth saving. As it turns out, PSE and the transitivity
principle do allow us to derive from continuity for easy cases something
very close to continuity for the extreme case. More precisely, the following
can be proved:

Consider any finite descending outcome sequence o1, . . . , on, that is,
any sequence in which every element oi (i < n) is better than its immediate
successor oi+1. Note that, for the proof to follow, the sequence need not be
gradually descending: Its elements need not be only slightly better than
their immediate successors. The sequence will be said to obey continuity
for adjacent elements if for every three consecutive elements oi−1, oi , oi+1,
the middle element in that triple, oi , is equally good as some lottery

8 To see this, let p = (r − r′ ′)/(r′ − r′ ′). For example, for r′ = 10, r = 7 and r′ ′ = 2, p =
(7-2)/(10-2) = 5/8.

9 Rather amusingly, Temkin suggests that “most of us will accept” the existence of a
probability p for which this equation holds, in those cases in which both o′ and o′′ are
close to o (ibid: 99). That’s certainly true! But the Gricean implication of this statement (that
“some of us might not”) is more problematic.
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(oi−1, p, oi+1) on the first and the third element, with p higher than 0 and
lower than 1.

The relation ≈ will be said to be transitive if and only if for all outcomes
or lotteries x, y, z, if x ≈ y and y ≈ z, then x ≈ z. Note that the transitivity
of ≈, which we need for the proof, is entailed by Tr�, if we define x ≈ y in
the standard way, as x � y & y � x. But the converse entailment does not
hold. Thus, the full power of Tr � is not needed for the result that follows.

Observation 1: Consider any descending outcome sequence o1, . . . , on,
with n ≥ 3. Continuity for the adjacent elements in that sequence, together
with PSE and the transitivity of ≈, entail that its second outcome is equally
good as some compound lottery on the outcomes in the sequence that
involves a risk of ending up with on.

Since the assumption of continuity for adjacent elements would in
the present context be question-begging for some descending sequences,
one might find Observation 1 not very interesting. After all, the triple
o1, o2, on in which the second element is only slightly worse than the first
one and the third element is radically worse than the other two, is also an
example of a descending sequence. The claim that o2 in such a sequence
is equally good as a lottery on the adjacent elements (i.e., on o1 and on)
is what is being questioned in the first place. However, since Observation
1 is perfectly general, it also holds for all gradually descending sequences
that slowly take us all the way to a disaster. For such sequences, continuity
for adjacent elements seems to be a more reasonable requirement.

Corollary: Suppose an outcome sequence o1, . . . , on is gradually
descending, that is, every element in the sequence is only slightly worse
than the immediately preceding one. Suppose also that the initial elements
of the sequence are quite satisfactory while the terminal elements are
disastrous. Continuity for the adjacent elements in such a gradually
descending sequence, that is, Continuity for Easy Cases, together with
PSE and the transitivity of ≈, entail that the second-best outcome in the
sequence, o2, is equally as good as some compound lottery that involves
a risk of the disastrous outcome on, and that at best can end up with o1,
which is only slightly better than o2.10

Note that we do not quite prove continuity for this extreme case.
Continuity would require that the second-best outcome is equally good as

10 If the assumption of continuity for adjacent elements would be question-begging for some
descending sequences, why do we bother with proving Observation 1 in the first place,
instead of directly concentrating on its Corollary? (We are indebted to Peter Vallentyne
for pressing this point.) Well, we proceed in this roundabout manner because we want
to make clear that the proof we provide below has a very simple structure. In particular,
nothing in that proof depends on the somewhat vague notions of a “gradual descent” or
“slight worsening” that are central to Corollary.
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a simple lottery on the best and the worst outcome. We haven’t proved that
this is the case. But we prove something that is weaker but just as counter-
intuitive. For our resistance to continuity for the extreme case rests on the
intuition that o2 is so satisfactory and on so disastrous that no chance of
a slight improvement from o2 to o1 is worth the risk, however small, of
ending up with on instead.

Proof of Observation 1. For simplicity, let us suppose that a
descending outcome sequence has just five elements: a � b � c � d � e.
A generalization of this proof for sequences of arbitrary length is provided
in Appendix 1.

We take continuity to hold for the adjacent elements, that is, for any
three consecutive outcomes in the sequence. We want to show that b is
equally good as some compound lottery that can be constructed out of the
elements of this sequence and that involves a risk of ending up with e.

By continuity for adjacent elements, there are some p, p′ and p′′, 0 < p,
p′, p′ < 1, such that

(i) b ≈ (a , p, c),
(ii) c ≈ (b, p′, d),

and

(iii) d ≈ (c, p′′, e).

By PSE, (iii) entails that

(iv) (b, p′, d) ≈ (b, p′, (c, p′′, e)).

From (ii) and (iv), by the transitivity of ≈, it follows that

(v) c ≈ (b, p′, (c, p′′, e)).

By PSE again, (v) entails that

(vi) (a , p, c) ≈ (a , p, (b, p′, (c, p′′, e))).

From (i) and (vi), by the transitivity of ≈, we get

(vii) b ≈ (a , p, (b, p′, (c, p′′, e))).

This is what we have been after. According to (vii), the second-best outcome
is equally good as a compound lottery which is constructed out of the
outcomes in the sequence, and which involves a non-zero probability for
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e, the worst outcome in the sequence. The probability in question equals
(1 − p)(1 − p′)(1 − p′′), which is greater than zero given that each of p, p′

and p′′ is lower than one.

4. DISCUSSION

What can we say about these results? If we do not want to be driven to
accepting risks of disastrous outcomes for the sake of small improvements,
Corollary to Observation 1 implies that we must either (i) deny that
Temkin sequences are possible, that is, deny that disastrous outcomes
can be reached from satisfactory outcomes by finite gradually descending
sequences, or (ii) reject PSE, or (iii) reject Continuity for Easy Cases, or –
finally – (iv) reject the transitivity of ≈. Since we take this last alternative
to be a desperate measure, we won’t discuss it in this paper. Instead, we
shall consider the first three options.

4.1 Are Temkin’s sequences possible?

Denying that a gradually descending sequence can lead from satisfactory
outcomes to a disaster is a possibility that Temkin never considers in his
paper. Still, it is an option that has been around for many years now.
One standard proposal is to postulate infinite value distances between
satisfactory and disastrous outcomes.11 That way, we can never reach the
latter from the former by a finite sequence of small steps, if a small step
by definition makes the outcome worse only by a finite value amount.
In a descending sequence in which the starting-point and the end-point
infinitely differ in value, there must be at least one step, from oi to oi+1,
for some i such that 1 ≤ i < n, in which value radically decreases – by an
infinite amount. In that step, then, continuity for easy cases will not be
applicable: outcomes oi and oi+1 are too far apart. The expected value of a
lottery (oi−1, p, oi+1) is infinitely lower than the value of oi , for any p < 1.

Another standard proposal, which in some ways is closely related
to the previous one, avoids postulating infinite values but instead
introduces multidimensionality into betterness comparisons and imposes
some ordering of lexical priority on the dimensions. In other words, the
solution is to forbid any trade-offs between losses on the more important
dimensions and improvements on the less important ones.12 In this way,
breaks in continuity can easily be accounted for. Lexical priority works
somewhat like infinite differences in value: If one outcome is superior
to another on the lexically prior dimension, then the value of the former
outcome belongs, so to speak, to a different order of magnitude than the

11 For the references to relevant literature on ‘non-Archimedean’ decision theory that allows
violations of continuity by introducing infinite utilities, see note 6 in Hájek (2001).

12 The classical reference is Hausner (1954).
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value of the latter outcome. If we now assume that a slight worsening of
an outcome by definition must take place on the lexically less important
dimension, it follows that really bad outcomes – the ones that we would
never want to risk for the sake of small improvements – can never be
reached by a sequence of slight worsenings from a satisfactory point of
departure. Consequently, Temkin’s argument does not get off the ground.

This observation should not, however, be assigned too much impor-
tance. To begin with, the proposal above has some rather unacceptable
consequences. The lexical modeling implies that no trade-offs at all are
allowed between gains and losses on the different dimensions. If o’ has a
lower value on the first dimension than an outcome o, by however small
amount, then it is worse than o, independently of how much higher value
it might have on the second dimension. This seems counter-intuitive.

One could also put this problem in another way: why assume that slight
worsenings can only take place on the less important dimension? Can’t
an outcome be slightly worse than another if it is worse on the lexically
prior dimension, but only by a very small amount? A remedy might be to
suppose that, on the lexically prior dimension, each outcome is assigned
only one of, say, two extreme values, 1 or 0. (Say, 1 for life and 0 for death;
or – to take another example – 1 for heaven or 0 for hell in the afterlife.
Instead of just two values, we could, of course, have several, for example,
3, 2, 1 and 0. What is important is that the value losses with respect to
the lexically prior dimension proceed in discrete jumps rather than in
a continuous manner.) Under these circumstances, outcome differences
with respect to the lexically prior dimension will always be significant.
But such a maneuver radically limits the applicability of the modeling.
Most relevant dimensions of comparison we can think of are much more
continuous than this.

What is more, when we move to lottery comparisons, the counter-
intuitive implications will arise even for this special 1-or-0 case. Even if
the value of an outcome on the lexically prior dimension is either 1 or 0,
the expected value of a lottery on outcomes can on that dimension be
anywhere between these two extremes. If lotteries are compared in terms
of their expected values on different dimensions, with the more important
dimension being ascribed lexical priority, the following will hold: If a
lottery l’ has a lower expected value on the first dimension than a lottery
l, by however small amount, then it is worse than l, independently of how
much higher expected value it might have on the second dimension.

Even if one ignores this difficulty, one might question the basic idea
of a multi-dimensional approach to discontinuity: It is by no means
obvious that breaks in continuity always are due to multidimensionality in
betterness comparisons. Even if outcomes are characterized along just one
dimension, as in Temkin’s example with a descending sequence of yearly
incomes, it may be the case that we are prepared to accept continuity for
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adjacent outcomes in the sequence but not for the outcomes that are far
apart. Thus, breaks in continuity seem to be possible even as one descends
along just one dimension.

Or so it might seem. The appearances may be misleading, however. In
real life, a factor such as the income size stands for several dimensions
that are causally connected to one’s earnings. Food, housing, sex,
entertainment, travel, etc. are all different dimensions on which one’s
life may vary depending on income. On the other hand, the relations
between such life dimensions do not seem to be lexical, even though
some of these dimensions are more important than others. The same
considerations apply if we think of infinitistic explanations of continuity
breaks instead of the lexical ones. It is not obvious that Temkin’s sequence
of gradually decreasing yearly incomes must involve some step in which
the value of an income infinitely decreases, as would be required by the
infinitistic account we have sketched earlier. Thus, Temkin may be right
in his suggestion that disastrous outcomes, which we don’t want to risk
for small improvements’ sake, sometimes can be reached from satisfactory
outcomes by finite gradually descending sequences.

4.2 Is PSE unassailable?

Another option, then, that we should better consider is to question
PSE. Contrary to Temkin’s suggestion, it is clear that PSE is a highly
controversial principle. Here’s how it might be criticized: to assume PSE is
to accept that we can always replace a part of a whole, such as a prize in a
lottery, by another part that is equally good, without changing the overall
value of the whole in question. Obviously, this is a claim that post-Moorean
moral philosophers should be wary of accepting. If – as G. E. Moore has
taught us – the value of a whole need not be the sum of the values of its
parts, then replacing parts of that whole with other parts that are equally
good may not keep the value of the whole unchanged. In other words, the
contributive value of a part should not be confused with the value that this
part has on its own, independently from the context.

This quick and easy rejection of PSE is, however, much too quick.
Treating lotteries as wholes and the possible prizes as their parts is
misleading to some extent. That replacements of parts by their equivalents
may change the value of the whole package is a simple “complementarity
effect,” as economists would put it. As far as the instrumental or extrinsic
value is concerned, complementarity is a familiar fact of life: in the context
of a given package or bundle of goods, the instrumental/extrinsic value of
a part may well be different from its value in another package. Therefore,
complementarity effects are to be expected: Parts that are equally good in
one context can make unequal value contributions in a different context.
For intrinsic value, the presence of complementarity effects is less obvious,
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but if the intrinsic value of a package depends not just on the intrinsic
values of its parts but also on their interrelations within the package, then
we should expect complementarity effects even in this case. This is what
Moore has taught us: Replacing a part with another part with the same
intrinsic value may influence the interrelations between the parts and in
this way change the intrinsic value of the package as a whole. However, as
has often been pointed out, packages or bundles of goods in one important
respect differ from lotteries: The former are “conjunctive” wholes, while
the latter are essentially “disjunctive” in nature. In a conjunctive whole, its
different parts coexist and thus can interrelate, while in a lottery, different
prizes are alternatives to each other. If one of them is realized, the other one
is not. Consequently, they cannot interrelate. Therefore, identifying the
contributive value of a possible prize with the value that prize has on its
own (discounted by probability) is not obviously unreasonable.13 If we still
want to reject PSE, we need an independent motivation, which specifically
targets disjunctive wholes. That is, we need an argument that specifically
questions replacements of prizes in lotteries.

Such a motivation has been provided by Maurice Allais.14 Following
his lead, it is easy to construct examples in which PSE would lead
to counter-intuitive results. Thus, consider a compound lottery (($3000,
.9, $0), .5, $0). If we in that lottery replace its risky prize, the sub-lottery
($3000, .9, $0), by its monetary equivalent, say, $1000, this replacement may
significantly decrease the value of the lottery of the whole. An agent who
sets value on money and an extra value on safety could well consider the
safe $1000 to be an appropriate equivalent of the somewhat risky ($3000,
.9, $0). Nevertheless, such an agent may still go for the chance of a larger
gain at the expense of a slight increase in risk when both of his choice
alternatives are risky, as they are in the choice between (($3000, .9, $0),
.5, $0) and ($1000, .5, $0).

How can examples like this be squared with the intuition that Moore’s
principle of organic wholes is applicable only to wholes with coexistent
parts? Here is a plausible explanation: while alternative lottery outcomes
do not coexist in a lottery, their possibilities do. In one sense, then, a
disjunctive whole such as a lottery may be seen as a conjunctive whole
composed of possibilities. This allows for the interrelations between such
possibilities to play a role in the lottery evaluation.

However, we are not yet in the clear. Even though Allais-type examples
manage to show that PSE is a deeply problematic principle, they need not
be directly relevant to the issues discussed in this paper. It is essential to
the cases like the ones Allais has considered that there is a large distance in

13 For this observation, see v. Neumann and Morgenstern (1953: 18) and Samuelson (1952).
14 See Allais (1953). For an able defense of Allais’ objection, see McClennen (1988). For a

thoughtful criticism of Allais-type counter-examples, see Broome (1991: ch. 5).
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value between the best and the worst outcome in a sub-lottery that is being
replaced by a safe equivalent. (Thus, in our example, there is a large value
distance between $3000 and $0.) It is that feature of these cases that accounts
for the violation of PSE. Without the large distance in value between lottery
outcomes, some of the intuitions behind Allais-type examples would
not come into play. On the other hand, in the case of Observation 1,
things are different. There is a proof of that observation, slightly more
complicated than the one we have sketched above, in which we only
substitute elements in a descending outcome sequence with lotteries
between adjacent elements.15 If the sequence is gradually descending,
the value differences between such lottery outcomes are small, which
means that the Allais-type objections are not directly applicable to cases
of this kind. For this alternative proof of Observation 1, see Appendix 2.
The proof relies on a generalized form of PSE that allows substitutions of
equivalents in lotteries at an arbitrary position, however deeply imbedded
that position may be in a given lottery. Thus, for example, if an outcome
o is equally good as a lottery (o′, p, o′′), then Generalized PSE allows
interchanging o with (o ′, p, o ′′) in, say, a compound 2-stage lottery in which
one of the possible prizes is itself a lottery that has o as one of its prizes. In
Appendix 2, we show that Generalized PSE is derivable from the ordinary
PSE.16

This does not mean, of course, that it is unproblematic to use
(generalized) PSE for substitutions of outcomes with lotteries that exhibit
small value distances. It might well turn out that such substitutions also are
questionable, but that their problematic nature is less easily discernible.
Nevertheless, if we do not want to accept the conclusion that a chance
of a small improvement is worth taking a risk of a disastrous outcome,
giving up PSE is not enough, as we now are going to show. For we seem
to be driven to that worrisome conclusion even if we don’t assume PSE.17

More precisely, the conclusion in question can be derived using just two

15 By contrast, in the proof provided above, an outcome that is close to the beginning of the
sequence is being replaced by a compound lottery whose final outcomes can greatly vary
in value, if the value distance between the outcomes in the beginning and the end of the
sequence is large. This makes that proof vulnerable to Allais-type objections.

16 In the alternative proof of Observation 1, we only make use of a weak version of the
generalized PSE, namely, a version which is restricted to substitutions of outcomes with
lotteries on adjacent elements. In view of the equivalence between PSE and generalized
PSE, it might therefore seem that we thereby manage to derive the same result as in the
original proof but now from a weaker premise. However, this isn’t exactly correct. While
we do prove in appendix 2 that PSE entails the generalized PSE, it is probably not the case
that this entailment would still obtain if both principles were restricted to substitutions
with lotteries on adjacent elements. At least, the proof we use in the appendix cannot be
adjusted to establish the latter claim.

17 We are indebted to Sven Danielsson for alerting us to this possibility.
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principles: a somewhat strengthened version of Continuity for Easy Cases
plus a very natural assumption about the concept of “slightly worse.”

Extended Continuity for Easy Cases: For all outcomes or lotteries x, y and
z, if y is slightly worse than x and z is slightly worse than y, then there is
some probability value p, 0 < p < 1, such that y ≈ (x, p, z).

The difference between this version of Continuity for Easy Cases and
the original version of that principle is that x, y, and z now are allowed to
vary not just over outcomes but also over lotteries: in particular, what we
are going to need for our derivation below is the following assumption. If
an outcome o is slightly worse than another outcome o ′ and if a lottery l is
slightly worse than o, then there is some p < 1, such that o ≈ (o ′, p, l).

The assumption about “slightly worse” that will be used in the
derivation says that being slightly worse than a given object is a feature
that is inheritable by equivalents.

Slightly Worse Equivalents: For all outcomes or lotteries x, y, z, if x ≈ y
and x is slightly worse than z, then y is slightly worse than z.

This assumption is partly related to Tr �: One of the implications of
the latter principle is that being worse than a given outcome or lottery
is inheritable by equivalents. Since whatever is slightly worse must ipso
facto be worse, Tr � entails that if x ≈ y and x is slightly worse than z,
then y must be worse than z. But whether it has to be slightly worse is
another matter. Thus, the relationship between the two principles is not
straightforward: Tr � neither entails Slightly Worse Equivalents nor is
entailed by it.

Observation 2: Consider any outcome sequence o1, . . . , on, with n ≥ 3,
that is gradually descending, that is, a sequence in which every successive
element is only slightly worse than its immediate predecessor. Together
with Slightly Worse Equivalents, Extended Continuity for Easy Cases
entails that the second-best outcome o2 is equally good as some compound
lottery on the outcomes in the sequence that involves a risk of the worst
outcome on and that at best can end up with o1, which is only slightly
better than o2.

For the proof of this observation, see Appendix 3.
What lessons should one draw from this result? We might, of course,

put into question Slightly Worse Equivalents, but this seems to be a
very unattractive option. The first lesson is that PSE is not essential for
generating the problematic implications. The second lesson, we shall now
argue, is that we should reject Continuity for Easy Cases. We should give
up that principle not only in its extended version but also in its original
simple form, in which it is meant to apply just to the basic outcomes.
Despite the appearances, this premise of Temkin’s argument is inherently
problematic.
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4.3 What about continuity for easy cases?

We want to question, then, whether Continuity for Easy Cases holds. Think
of all triples of consecutive outcomes in Temkin’s gradually descending
sequence – a sequence which starts with a satisfactory outcome and ends in
a disaster. Must there exist, for any such a triple oi−1, oi and oi+1, a lottery on
the first and the third outcome that is equally good as the second outcome
in the triple?18

Since the outcome sequence is gradually descending, oi is slightly
worse than oi−1 and oi+1 is slightly worse than oi . Now, suppose the
following is the case:

Borderline: While oi−1 and oi are satisfactory outcomes, oi+1 is not.

In other words, as one moves from oi to oi+1, the borderline is crossed
between what is satisfactory and what is not. Note that this borderline
must be crossed somewhere in Temkin’s sequence. Indeed, as one moves
down the sequence, one may well pass several borderlines: one between
outcomes that are excellent and those that are less than excellent but still
satisfactory, another between satisfactory outcomes and those that are not,
and yet another between outcomes that are unsatisfactory but still not
disastrous and the truly disastrous outcomes. To simplify the argument,
however, let us focus on just one borderline – the one between satisfactory
outcomes and those that are unsatisfactory.

There are problems with the potential vagueness of such a borderline,
but let us ignore this issue just for a moment. Now, if risks of disasters are
not worth chances of small improvements, the same might also be said
about risks of unsatisfactory outcomes: Why risk getting an unsatisfactory
outcome for a small gain? One might object, however, that there is a
disanalogy between borderline cases and risks-of-disaster cases since the
latter involve large differences among the outcomes whereas borderline
cases only involve small differences. Given that there are only small
differences among the outcomes under consideration, one might claim

18 Would Temkin need to argue that Continuity for Easy Cases holds for all Temkin sequences,
i.e. for all sequences that gradually descend from highly satisfactory outcomes to disasters?
Or is it enough if he can establish that it holds for at least some sequences of this kind?
This issue has been raised by an anonymous referee. Well, if Temkin were to argue that
Continuity for Easy Cases, together with the other assumptions, suffices to establish
unrestricted continuity, then he would need to defend that principle for all sequences
of this kind (indeed, for all descending sequences). But if he only wants to show that we
sometimes in this way are being led to what we consider to be a counter-intuitive conclusion
about chances of small improvements being worth taking risks of disasters, then his task
is much easier: he only needs to establish that Continuity for Easy Cases holds for at least
one sequence of this kind. In what follows, we choose this second interpretation and thus
try to provide considerations that put Continuity for Easy Cases in doubt with regard to
all sequences like this.
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that it is irrational to attach much significance to the fact that one of the
outcomes is not satisfactory.19

Although we agree that there is in this respect a disanalogy between the
two kinds of cases, we think that even in borderline cases there is something
intuitive about unwillingness to take certain risks. This intuition can be
accounted for in terms of the categorical evaluations of outcomes (such as
the outcome being good or bad, satisfactory or unsatisfactory), rather than
in terms of the comparative differences between them. If, as things stand,
I have a guarantee of a satisfactory outcome, why would it be irrational of
me to refuse to risk an unsatisfactory outcome just for the sake of a chance
of a small improvement? For example, it doesn’t seem irrational to attach
importance to leading at least a satisfactory life, so that one would decline
any chance of a small improvement that carries with it a risk of leading an
unsatisfactory life.

Therefore, if borderline holds, it may well be the case that no chance
of a small improvement from oi to oi−1 can compensate the risk, however
small, of ending up with an unsatisfactory outcome oi+1 instead of the
satisfactory oi . But then, since the difference between oi and oi+1 is small,
we have a violation of Continuity for Easy Cases in this particular case.20

Thus, if the borderline between satisfactory and unsatisfactory outcomes
is precise, then Continuity for Easy Cases must be rejected. And without
that principle the worrisome conclusion for the extreme case no longer
follows.

What happens, though, if it is indeterminate where in the sequence
the borderline should be drawn? Well, if the borderline is vague, this
vagueness affects some of the applications of Continuity for Easy Cases:
for some triples of consecutive outcomes in the sequence, those in the
vague area, it will be indeterminate whether continuity holds for these
triples or not.21 More precisely, for every triple of consecutive outcomes
for which it is indeterminate whether its first two elements are satisfactory
while the third element is not, it will be indeterminate whether Continuity
for Easy cases holds for the triple in question.

19 We owe this point to Peter Vallentyne.
20 Indeed, if there are several significant borderlines as one moves down the sequence, then

whenever any one of them is crossed, Continuity for Easy Cases is put into question.
21 One might add that, on the so-called supervaluationist approach to vagueness, it is

determinate that Continuity for Easy Cases is violated at some point, even though
the identity of that point is indeterminate. On that approach, a statement is vague
(= indeterminate as far as its truth value is concerned) if it is true on some precisifications
and false on others. Now, for different precisifications of the borderline between
satisfactory and unsatisfactory outcomes, the point at which Continuity for Easy Cases
fails will be different. But there will always be some such point, on every precisification.
For a classical exposition of supervaluationism, see Fine (1975). A detailed recent defense
of this account is provided in Keefe (2000). It should, however, be emphasized that the
argument in our paper does not presuppose any particular approach to vagueness.
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If it is vagueness that accounts for the apparent plausibility of
Continuity for Easy Cases, then the derivation of the counter-intuitive
conclusion for the extreme case turns out to rely on a principle that is just
as problematic as the principle that lies behind the classical sorites. When
we remove from a heap of sand one grain of sand after another, there will
never be a point at which we cross a determinate borderline between a
heap and a non-heap. This accounts for the apparent plausibility of the
principle: “Removing just one grain cannot make a difference: it can never
make a non-heap out of a heap.” This principle seems plausible because
none of its specific applications is determinately false. However, if we start
with a heap composed of n grains of sand and then repeatedly apply the
principle in question, we are driven to the absurd conclusion that one
grain of sand still makes a heap. Likewise, Continuity for Easy Cases seems
plausible because none of its applications is determinately false. However,
repeated applications of that principle drive us to the counter-intuitive
conclusion that something like continuity would hold even in the extreme
case.

To sum up, since Temkin’s result rests on Continuity for Easy Cases,
and since that principle should be rejected, there is, pace Temkin, no need
to reject Transitivity.

5. CONCLUSION

Temkin sequences of outcomes, which gradually lead all the way down to
disaster, do seem to be possible and we have also shown that Temkin to
some extent was right in his claims about such sequences: in the presence
of PSE and given a weak transitivity assumption, Continuity for Easy
Cases leads to something like continuity for the extreme case. We seem to
be driven to the conclusion that a chance of a small improvement is worth
running a risk of disaster. To be sure, PSE, contrary to Temkin’s suggestion,
is a highly questionable principle, but, as we have shown, it is not really
needed for this derivation. We can give up PSE and still derive the counter-
intuitive conclusion, if we only extend Continuity of Easy Cases somewhat
and let it apply to lotteries as well as to outcomes. On the other hand,
Continuity for Easy Cases, even in its original simple form, can be put in
doubt. Its apparent plausibility trades on the vagueness of the borderline
between satisfactory and unsatisfactory outcomes in a Temkin sequence.
The derivation of the counter-intuitive conclusion about the extreme case
appears therefore to be just another instance of sorites.

APPENDIX 1: PROOF OF OBSERVATION 1

Observation 1: Consider any descending outcome sequence o1, . . . , on, with
n ≥ 3. Continuity for the adjacent elements in that sequence, together with
PSE and the transitivity of ≈, entail that its second outcome is equally good
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as some compound lottery on the outcomes in the sequence that involves
a risk of ending up with on.

We prove this observation for descending sequences of any length
n ≥ 3, by mathematical induction on the sequence length:

Base step: For n = 3, Observation 1 immediately follows from continuity
for adjacent elements.

Induction hypothesis: Observation 1 holds for all descending sequences of
length n.

We want to establish that it then also holds for all descending sequences
of length n + 1. Let o1, o2, o3, . . . , on+1 be such a sequence. We need to show
that o2 is equally good as some compound lottery that involves a risk of
ending up with on+1.

Continuity for adjacent elements implies that

(i) o2 ≈ (o1, p, o3), for some p such that 0 < p < 1.

Since the subsequence o2, o3, . . . , on+1 is of length n, our induction hypo-
thesis implies that

(ii) o3 ≈ l, for some compound lottery l on the elements of o2, o3, . . . , on+1
that involves a risk of ending up with on+1.

Given PSE, (ii) implies that

(iii) (o1, p, o3) ≈ (o1, p, l),

and given the transitivity of ≈, (i) and (iii) imply that

(iv) o2 ≈ (o1, p, l).

Since p < 1 and l involves some risk of ending up with the worst outcome
on+1, the same applies to (o1, p, l). Q. E. D.

APPENDIX 2: AN ALTERNATIVE PROOF OF OBSERVATION 1

There is an alternative proof of that observation, which, while more
complicated, may still be preferable, for reasons suggested in section 4.2
above. It has the following important feature: Whenever some outcome in
the sequence in the course of the proof gets replaced by an equally good
lottery, the possible outcomes of that lottery are adjacent to the outcome
that is being replaced.
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In this alternative proof, we make use of Generalized PSE which allows
substitutions of equivalents at an arbitrary position in a compound lottery,
however deeply imbedded that position may be. As is shown below,
Generalized PSE is derivable from the ordinary PSE.

Like the proof in Appendix 1, the alternative proof also proceeds by
induction on the sequence length. The base step, for n = 3, is the same as
in the previous proof and the induction hypothesis is the same, namely,
that Observation 1 holds for all descending sequences of length n. To prove
Observation 1 for descending sequences of length n + 1, we consider any
such sequence o1, o2, . . . , on, on+1. Since its initial subsequence o1, o2, . . . , on

is of length n, the induction hypothesis implies that o2 is equally good
as some compound lottery l on o1, o2, . . . , on that involves some risk of
ending up with on. (Note that we now apply the induction hypothesis to
the initial subsequence rather than to the terminal one, as we did in the
previous proof.) Continuity for the adjacent elements implies that on ≈
(on−1, p, on+1), for some p such that 0 < p < 1. We now use Generalized
PSE to replace on in l by (on−1, p, on+1). The resulting lottery l’, which is
equally good as l, involves some risk of ending up with the worst outcome
on+1. And by the transitivity of ≈, it follows that o2, which is equally good
as l, must be equally good as l’. Q. E. D.

It remains to prove that PSE entails Generalized PSE. To formulate the
latter principle in a precise way, we need some definitions.

The depth of a lottery is defined recursively:

(i) a lottery on basic outcomes is of depth 1;
(ii) if a lottery l has at least one prize of depth k and if none of its prizes

is of a greater depth, then l is of depth k + 1.

An outcome or a lottery x will be said to be contained in a lottery l iff

(i) l has x as one of its prizes, that is, if for some outcome or lottery y, l
is of the form (x, p, y) or (y, p, x),
or

(ii) l has as one of its prizes some l’ that in turn has x as one of its prizes,
or

(iii) l has as one of its prizes some l’ that has as one of its prizes some l”
that has x as one of its prizes,
or, etc.

In case (i), we say that l contains x at position 1 or 2, depending on
whether x is the first or the second prize in l. Thus, if l = (x, p, y), then
l contains x at position 1 and y at position 2. In case (ii), l contains x at
position 11, 12, 21 or 22, depending on whether l’ is the first or the second
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prize in l and on whether x is the first or the second prize in l’. For example,
if l = ((x, p, y), z), then l contains x at position 11 and y at position 12. We
define other positions in a lottery in a similar way. If a lottery l contains
x at a position α, then l(y/x)α will be a lottery in which x in l at position
α is replaced by y. Note that a lottery may contain x at several different
positions. The replacement operation must therefore specify the position
at which replacement is to be made.

We now have all we need to formulate the generalized version of PSE:

Generalized PSE: For any outcomes or lotteries x and y and for any lottery
l, if l contains x at a position α and x ≈ y, then l ≈ l(y/x)α .

Using this principle we can make interchanges in a lottery at any position,
however deeply imbedded that position may be in the lottery in question.

Lemma: PSE entails Generalized PSE.

Proof by strong induction on lottery depth:

Base step: If a lottery l is of depth 1, the Generalized PSE immediately
follows from PSE.
Induction hypothesis: The Generalized PSE holds for the lotteries of all
depths up to k.
Now, consider any lottery l of depth k + 1. If l contains x at a position α,
and x ≈ y, then x at α either is a prize in l, in which case PSE immediately
entails that l ≈ l(y/x)α , or l has as its i-th prize (i = 1 or 2) some lottery l’
that contains x at some position β such that α = iβ. Since l’ is at most of
depth k, the induction hypothesis implies that l’ ≈ l’(y/x)β . Consequently,
by PSE, l ≈ l(l’(y/x)β /l’)i. Since l(l’(y/x)β /l’)i = l(y/x)iβ = l(y/x)α , it follows that
l ≈ l(y/x)α . QED

APPENDIX 3: PROOF OF OBSERVATION 2

Observation 2: Consider any gradually descending outcome sequence
o1, . . . , on, with n ≥ 3. Together with Slightly Worse Equivalents, Extended
Continuity for Easy Cases entails that the second-best outcome o2 is equally
good as some compound lottery on the outcomes in the sequence that
involves a risk of the worst outcome on and that at best can end up with
o1, which is only slightly better than o2.

Proof by induction on the length of the sequence:
Base step: If n = 3, Observation 2 immediately follows by Continuity for
Easy Cases.
Induction hypothesis: Observation 2 holds for all sequences of length n.
Now, consider any sequence of length n + 1: o1, . . . , on+1. By the induction
hypothesis, o3 is equally good as some compound lottery l on the sequence
o2, . . . , on+1 such that l involves a risk of ending up with on and at best can
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yield o2. Since o3 is slightly worse than o2, the same must apply to l,
by Slightly Worse Equivalents. Consequently, by Extended Continuity for
Easy Cases, there is some p, 0 < p < 1, such that o2 ≈ (o1, p, l). Since p < 1,
and l involves a risk of ending up with on+1, the same must apply to the
lottery (o1, p, l). Q. E. D.
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