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Abstract:

These are the stylized facts of long-run economic and demographic develop-

ment, as described by Galor and Weil (AER 1999, 2000): Under an initial Malthu-

sian Regime the growth rates of population and per-capita income are both low.

Then follows a Post-Malthusian Regime, with higher growth rates of both popula-

tion and per-capita income. Finally, the economy transits into a Modern Growth

Regime, with falling population growth rates, but accelerated growth rates of per-

capita income. This paper models the transition through all these three regimes

endogenously. The model also captures the empirical regularity of a simultaneous

fall in the level and the volatility of death rates, and the fact that death rates fell

before birth rates. Throughout time, we let epidemic shocks hit the economy at

a constant rate. However, with rising human capital the impact of these shocks

is mitigated. For many generations the economy is stuck in a Malthusian Regime

with volatile and high death rates. Sooner or later it experiences a phase of rela-

tively mild epidemics. Mortality declines, enabling population and human capital

to simultaneously start growing: a Post-Malthusian Regime. Once human capital

growth has taken o®, epidemic shocks have smaller impact. Finally comes a stage

where parents start having fewer children, and instead invest more in their edu-

cation: a quality-quantity switch. This triggers faster growth in human capital.

The economy enters the Modern Growth Regime.
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1. Introduction

\This entire sequence of events from 1894 to 1921 occurred un-

der the eyes of professionally sensitized medical teams whose job was

to ¯nd out the best control to plague. [...] Without such study and

the prophylactic measures that followed, the twentieth century might

well have been inaugurated by a series of plagues reaching completely

around the earth, with death tolls dwar¯ng those recorded from the age

of Justinian and the fourteenth century, when the Black Death rav-

aged Europe and much of the rest of the Old World. [...] Doctors and

public health o±cers, in fact, probably forestalled epidemics that might

have checked or even reversed the massive world-wide growth of human

population that distinguishes our age from all that have gone before."

William H. McNeill (1976, pp. 156-158), speculating about the

possible consequences of a series of plague epidemics in China, one of

which reached Canton and Hong Kong in 1894, but never spread to

the rich world.

Throughout history the levels of human population and its living standards

have remained fairly constant. The sudden increase in income that came with the

industrial revolution 200 years ago is a very recent phenomenon, and so is the

initial rise | and subsequent fall | in population growth that followed it.1

This observation provokes some questions. What caused the industrial revo-

lution in the ¯rst place, and why did it take so long to occur? Was it inevitable?

Could it have happened at a di®erent point in time, and/or in a di®erent region

of the world? These issues are addressed in a recent growth literature. Within
1This follows from logical reasoning: had income before the industrial revolution grown at

rates similar to what we see today, income levels 1000 years ago, say, would have been so low

that no one could reasonably have survived. Thus, income levels growing at present rates must

be quite a recent phenomenon [cf. e.g. Kuznets (1971, pp. 23-27), and Pritchett (1997)].
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one uni¯ed framework, various authors try to explain both the stagnant levels

of income and population for long periods of time, the recent and sudden rise in

income growth, and the associated changes in population growth.

The economic and demographic development of the Western World the last

couple of millennia has been described by Galor and Weil (1999, 2000) as pass-

ing through three distinct stages, or regimes. The ¯rst is called the Malthusian

Regime. Here population and living standards are constant, or grow very slowly.

The relationship between per-capita income and population growth is positive:

small increases in income lead to increased population growth. This regime pre-

vails from around the ¯rst century A.D. (or even earlier) until around the late

18th century. Thereafter, the economy transits into what Galor and Weil call

a Post-Malthusian Regime, with increased growth rates of both population and

per-capita income. The relationship between income and population growth re-

mains positive, as in the Malthusian Regime. The ¯nal stage of development is

the Modern Growth Regime, starting towards the end of the 19th century. Here

per-capita income growth accelerates even further, whereas population growth

declines, re°ecting a negative relationship between the two.

Our paper sets up a growth model which endogenously generates the transition

through these three regimes. One ingredient is the presence of mortality shocks,

called epidemics. However, what di®ers between the three regimes is not the

shocks per se| they are generated by the same exogenous distribution throughout

time; what is changing is the way society responds to the shocks. This makes our

model able to explain two other facts about the demographic transition: ¯rstly

that death rates fall before birth rates, and secondly that not only the level of

death rates fall, but also their volatility.

We use a two-period overlapping-generations model. Parents decide how many

children to have, and spend time caring for them. Part of that time builds up

children's human capital. Parents thus face the well-known trade-o® between

spending more time (higher quality) on fewer children (lower quantity), or vice
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versa.

A fraction of the children die before adulthood. As mentioned, this size of

this fraction is subject to epidemic shocks. We assume that the impact of these

epidemics is less severe if human capital is abundant. This captures the e®ect

of advances in medical skills, and knowledge about how diseases are spread, as

suggested by the quotation above. At the same time we assume that the impact of

an epidemic becomes more severe if population density is high, because diseases

then spread more easily. In fact, the very establishment of epidemic diseases

among humans is closely related to the rise in population density that came with

the birth of agriculture and cities [McNeill (1976), Diamond (1999)]. Also, up

until at least the end of the 19th century, urban mortality rates in Northwest

Europe were higher than those in rural areas [Kunitz (1983)].

However, in our model population density is not only a bad thing: we allow

for a \scale e®ect" so that the productivity in human-capital production increases

with population density. This captures a positive e®ect from the growth and

establishment of cities on learning and the spread of knowledge. This assumption

is suggested by e.g. Becker, Glaeser and Murphy (1999), and supported by the

empirical ¯ndings of e.g. Glaeser and Mare (1994). See also Johnson (2000).

The Malthusian Regime in our model is a locally stable steady-state where

death and birth rates are both high, and population roughly constant. Moreover,

mortality is highly volatile, increasing dramatically in periods of big epidemic

shocks. In periods with mild shocks population expands. This makes the impact

of the next epidemic worse, equilibrating population back to its Malthusian state.

With luck, the economy can escape this trap if it experiences a sustained phase

of mild shocks. The resulting population expansion raises productivity in human

capital production. More human capital in turn mitigates the e®ects of future

epidemics. In the beginning of such a take-o® the economy is still vulnerable:

a severe shock can wipe out a big part of the population, reduce human capital

productivity, and push society back to the Malthusian trap. This could be what
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happened to Europe during the Black Death 1346-50.

However, once human capital growth gets a chance to take o® the economy be-

comes increasingly resistant to shocks. While new diseases arrive at an unaltered

rate, more abundant human capital mitigates their impact. Society learns new

and better ways to stop epidemics, as illustrated by the quotation in the beginning

of this section. Mortality rates fall and °atten out. This is consistent with data

from e.g. Sweden (a country with relatively good statistics from its demographic

transition). As shown in Figure 1.1, as death rates fell, they also became less

volatile. The same pattern holds for the rest of Europe.2 Despite lower mortality,

in our model birth rates are still unchanged at this stage, so population expands.

This is the Post-Malthusian Regime.3

All through theMalthusian and Post-Malthusian Regimes, parents invest noth-

ing in their children's education. However, with growing population and human

capital productivity, parents at some stage ¯nd it optimal to invest time-costly

education in their o®spring. This makes children more costly to rear, inducing

a fall in birth rates: the standard quality-quantity switch. As mortality cannot

fall further (at least not below zero), population growth starts falling. Simultane-

ously, human capital growth jumps to even higher levels, as education constitutes

an input in human capital production. The economy enters the Modern Growth

Regime.

Earlier attempts to jointly model the industrial revolution and the demo-

graphic transition are relatively recent. An incomplete list as of today should

probably include Kremer (1993), Goodfriend and McDermott (1995), Hansen and

Prescott (1998), Lucas (1998), Doepke (1999), Galor and Weil (2000), Galor and

Moav (2000a,b), and Tamura (2000).4 In most of these papers, as in ours, endo-
2See Livi-Bacci (1997, p. 118), Maddison (1982, pp. 50-52), and Easterlin (1996, pp. 7-9).
3Birth rates in the Malthusian and Post-Malthusian Regimes are constant in our model,

rather than volatile as in Figure 1.1. See Section 3 for a discussion of this.
4These papers build on earlier work by Becker and Barro (1988), Barro and Becker (1989),

and Becker, Murphy and Tamura (1990), who were (among) the ¯rst to model a quality-quantity
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geneity of human-capital investment and/or fertility are the key elements driving

the dynamics.

However, none of these papers allow explicitly for mortality (in some cases

not even fertility). An early paper with growth and mortality is Ehrlich and Lui

(1991). In their model an exogenous fall in mortality raises the return to human-

capital investment, and pushes the economy onto a sustained growth path. As

human-capital growth takes o®, parents substitute quantity for quality (reduce

birth rates), leading to a demographic transition. Kalemli-Ozcan, Ryder, andWeil

(2000) model similar mechanisms in a continuous time framework. Our model dif-

fers in the channels through which the mortality decline promotes growth. Rather

than directly raising the returns to human-capital investment, falling mortality

causes a population expansion and a subsequent rise in the return to education

via the scale e®ect in human-capital production. Once productivity in human-

capital production reaches a critical level a non-negativity constraint on education

time ceases to bind, and the quality-quantity switch sets in. This is also what

causes the delayed fall in births rates, after death rates have started to fall. More-

over, unlike Ehrlich and Lui (1991) and Kalemli-Ozcan et al. (2000), we model

mortality endogenously.5

The common approach to endogenize mortality is to postulate that mortal-

ity depends negatively on some other variable, which measures living standards,

or economic development. This other variable may be per-capita income, as in

Kalemli-Ozcan (2000b)6; consumption, as in Jones (1999); or human capital, as

trade-o® in children into an endogenous growth framework.
5Another long-run growth model with exogenous, but explicit, mortality is Morand (2001).
6Kalemli-Ozcan's (2000b) model di®ers from ours, and most earlier work, by explicitly letting

each child face a probability of dying: the fraction of children dying is thus uncertain to the

parent (whereas we let it be known). If marginal utility of children is convex, a fall in the death

probability of each child (i.e. child mortality) lowers the precautionary demand for children, and

leads to an associated increase in education. See also Kalemli-Ozcan (2000a), PÄortner (2001),

and Tamura (2001).
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in our model, Morand (2000), and Tamura (2001). One novelty of our approach is

the balance between two counteracting mortality factors, population density and

human capital, and the way they amplify and mitigate epidemic shocks.

The remainder of this paper is organized as follows. Section 2 sets up the

model, describing production and consumption (Section 2.1), mortality (Section

2.2), and human capital (Section 2.3). The utility function is speci¯ed in Section

2.4, where the optimal behavior of the agents is also derived. Section 2.5 presents

the dynamics and draws the phase diagrams: ¯rst when education time is con-

strained to zero (Section 2.6), and then when education time operative (Section

2.7). Section 2.8 describes how to interpret the full transition from a Malthu-

sian to a Modern Growth Regime in terms of the phase diagrams, and Section

2.9 shows how the model can be calibrated and simulated to generate the same

transition. Section 3 ends with a concluding discussion.

2. The Model

Consider an overlapping generations model, where agents live for two periods: as

children, and adults. In childhood, agents make no decisions, but require time

to rear and educate. The time required by each child has a ¯xed component,

which the parent cannot in°uence, and a component which the parent can choose

freely, subject to a non-negativity constraint. The latter is called education time.

Both types of time constitute inputs in the production of the children's human

capital, but education time is more productive. Some children die; others enter

adulthood, taking as given their human capital stocks, and decide how much to

consume, how many children to rear, and how much time to spend educating their

own children.

8



Figure 1.1: Death and birth rates for Sweden 1749-1999. Source: Statistics Swe-

den (1999), and Hans LundstrÄom at Statistics Sweden.
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2.1. Consumption and production

Letting all production take place in the household sector, period t output of the

consumption good is given by

Yt = Dlt(L+Ht), (2.1)

where Yt is output, D is a productivity parameter, lt is time input in the consump-

tion goods sector, and L+Ht denotes the time-augmenting human capital. Nature

equips every agent with L units of human capital, and Ht measures the human-

capital component inherited from parents. When there is no risk of confusion, we

shall refer to Ht as human capital.

Childhood consumption is set to zero, so goods produced are spent on con-

sumption by the adult:

Yt = Ct, (2.2)

where Ct is the adult's consumption.

2.1.1. Time

The budget constraint for time is given by

1 = lt + (v+ ht)Bt, (2.3)

where Bt is the number of born children (or births), and v + ht is the time spent

on each child. Each adult has an endowment of time equal to 1. The number of

children is continuous and non-negative. We abstract from gender heterogeneity,

so each individual parent reproduces herself.

The component v is a ¯xed time cost of rearing one child, which can be in-

terpreted as the time required to nurse the child just enough to keep her alive.
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Parents are e®ectively constrained to undertake this nursing time.7 The compo-

nent ht measures time spent educating each child. This is a choice variable to the

parent, but subject to a non-negativity constraint.

2.2. Mortality

Some fraction of the births Bt die before reaching the second phase of life. This

fraction is denoted 1¡ Tt, which we shall refer to as mortality. We assume that

mortality increases when the economy is hit by certain shocks denoted !, which

can be interpreted as epidemics. These are i.i.d, with a lower and an upper

bound, denoted ! and !, respectively. Whereas the distribution of these shocks

is constant over time, the e®ects of them need not be. In 18th-century Europe

death rates were very volatile, increasing dramatically in periods of epidemics and

famines. Towards the second half of the 18th century, as the industrial revolution

took place, these mortality peaks °attened out. See Livi-Bacci (1997, p. 118),

Maddison (1982, pp. 50-52), and Easterlin (1996, pp. 7-9). Ourmodel can explain

this pattern.

We assume that the severeness of epidemics (1) increases with population

density, but (2) falls with human capital. Assumption (1) captures the idea that

diseases spread more easily in densely populated areas. This seems to have empir-

ical support. As described by Diamond (1999, Ch. 11), so-called crowd diseases

(which tend to spread as epidemics) occurred together with large and dense human

populations. They ¯rst began to appear with the rise of agriculture around 10,000

B.C. (as the number people a given amount of land could support increased), and

accelerated with the rise of densely populated cities somewhat later.

Assumption (2) captures the mortality reducing e®ects of improved medical

skills, and knowledge about how diseases spread. An illustration is given by the

quotation in the beginning of the introduction. Also, an improved skill level in
7Equivalently, utility could equal minus in¯nity if the parent spends less than v units of time

on each child.
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the economy probably helped to improve governing in the newly formed European

nation states. According to Easterlin (1996, p. 7) early reductions in mortality

were connected with an \improved ability of central administrations to isolate

entire regions from epidemics and to contain subsistence crises." See also Kunitz

(1983). Similarly, the more recent AIDS epidemic has hit poor countries harder,

where the levels of human capital are lower, and government institutions often

weaker.

Let Pt denote the (adult) population size in period t. With land ¯xed, Pt also

measures population density. To keep the understanding of the model simple, we

let mortality depend on the ratio Ht=Pt ´ Rt, i.e.,

Tt = T (Rt; !) . (2.4)

We assume:

Assumption 1. T : R++ £ [!; !] ! (0; 1) satis¯es

@T (Rt; !)
@!

< 0, (2.5)

@T (Rt; !)
@Rt

> 0, (2.6)

@2T (Rt; !)
@!@Rt

> 0 8 Rt ¸ R > 0, (2.7)

lim
Rt!1

T (Rt; !) = 1 8 ! 2 [!; !] , (2.8)
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lim
Rt!0
T (Rt; !) = 0 8 ! 2 [!; !] . (2.9)

The interpretation goes as follows. (2.5) says that an increase in ! (an epi-

demic) raises mortality (lowers the survival rate Tt); (2.6) says that mortality

falls with the human-capital stock, and rises with population density (recall

Ht=Pt ´ Rt); (2.7) says that the e®ect of an epidemic shock on mortality is

smaller if human capital is abundant and/or population not so dense (given that

Rt exceeds some positive level R, explained soon); (2.8) says that if human capital

grows at a faster sustained rate than population, the mortality rate approaches

zero; (2.9) says that if human capital grows at a slower sustained rate than pop-

ulation, the mortality rate approaches 100%.

The requirement that Rt ¸ R in (2.7) is made because when Rt approaches

zero (in¯nity) the marginal negative impact on T (Rt; !) of an increase in ! must

be negligible, since T (Rt; !) then equals zero (unity) for any !. [See (2.8) and

(2.9).] Put di®erently, the marginal impact of !-shocks on mortality must be

greatest (in absolute terms) at some intermediate level of Rt, i.e. R.8 However,

for intuitive understanding, we can pretend that Rt ¸ R always holds. In the

parametric example in Section 2.9 the cross-derivative in (2.7) will be positive in

the relevant interval.

2.3. Human capital

The production function for human capital takes the form

Ht+1 = A(Pt) [L+Ht] (½v + ht) , (2.10)

8To see this, the reader may draw a diagram with @T (¢)=@! on the vertical axis, and Rt on

the horizontal. From (2.8) and (2.9), we know that @T (¢)=@! = 0 at Rt = 0 and when Rt ! 1.

In between, @T (¢)=@! < 0. Say it has some unique minimum, which we can think of as R.

Then, for Rt ¸ R , it must hold that @T (¢)=@! is increasing in Rt , i.e., @2T (¢) =@!@Rt > 0.
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where A(Pt) is a productivity parameter (which depends on population density,

but is taken as ¯xed by each atomistic agent; see below), and ½v measures the di-

rect inheritance of human capital from one generation to the next, where ½ 2 (0; 1).

This is a novelty compared to e.g. Becker et al. (1990): the time spent nursing

each child, v (which the parent is e®ectively forced to undertake), adds to the

human capital of the child, but not as e±ciently as the time spent educating the

child, ht. We can think of this as capturing the fact that talking and interact-

ing with a child teaches it certain language skills, and a basic acquaintance with

customs and social conventions. This automatic spill-over of skills will be driving

growth in human capital at early stages of economic development, when ht = 0.

We assume a type of \scale e®ect": that the e®ectiveness with which one gen-

eration transmits human capital to the next [A(Pt)] is increasing with population

density. (Recall that land is ¯xed, so population size Pt also measures popula-

tion density.) Our assumption is meant to capture a positive e®ect on learning, or

transmission of skills and knowledge, in regions with shorter geographical distance

between people, i.e. cities.

A similar assumption is made by Becker et al. (1999), who sketch a model

with an urban human capital sector, and a rural goods production sector. In their

model, productivity may be decreasing with population size in the consumption

goods sector, whereas in the human capital sector population size has a positive

e®ect on productivity.

There are many ways to explicitly model such improved learning, or knowledge

spill-overs, in cities. Glaeser (1999) focuses on imitation, whereby agents' skills

are improved through random contact with other skilled people. Another expla-

nation for why cities are good for learning could be scale economies in schooling

and research, as suggested by Johnson (2000). Whereas we do not model cities

or urbanization explicitly, we have similar mechanisms in mind: a more dense

population facilitates contacts between people, and the growth of educational in-

stitutions, and thereby the transmission of skills from one generation to the next.
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Regardless of theoretical explanations, some direct empirical evidence in the

so-called New Economic Geography literature does support the basic argument.

Glaeser and Mare (1994) show that the wage gap between cities and rural areas

is due to a better ability of cities to generate human capital growth, rather than

e.g. ability bias.

The importance of small distances between people for the spread of ideas is

also illustrated by Ja®e et al. (1993), who ¯nd that citations of patents are more

common in the same geographical areas (state, country, or metropolitan area) as

the original patent. It seems reasonable that geographical distance should have

been even more important in historic times, in the absence of telephones, modern

transportation, and internet technology.

Leaving a more precise formulation of the relationship between population and

human capital transmission for future work, we simply black-box the relationship.

We assume the following:

Assumption 2. A : R++ ! ( bA;A¤) satis¯es

A0(Pt) > 0, (2.11)

lim
Pt!1

A(Pt) ´ A¤ <1, (2.12)

lim
Pt!0
A(Pt) ´ bA > 0. (2.13)

The interpretation goes as follows. From (2.11) human-capital productivity

increases with population density. From (2.12), increasing population density

does not raise human-capital productivity inde¯nitely, but only up to the level A¤.

This rules out inde¯nitely increasing human capital growth rates. From (2.13), as

population goes to zero human-capital productivity approaches something positive

( bA) rather than becoming zero. This ensures that the economy cannot \die out."
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2.4. Preferences

An adult agent active in period t (referred to as agent t) maximizes a utility

function given by

Ut = ln(Ct) + ® ln(BtTt) +®± ln(L+Ht+1) (2.14)

subject to the above budget constraints (2.1), (2.2), (2.3) and (2.10). We assume

that ± 2 (½; 1) (to guarantee the existence of an interior solution), and that ® > 0.

In (2.14) the second term measures the utility of quantity of surviving children.

With logarithmic utility it does not matter if we specify preferences over surviving

children BtTt, or births Bt, since ln(BtTt) = ln(Bt) + ln(Tt) and Tt depends only

on things which are taken as given by agent t (Ht, Pt, and !). Thus, ln(Tt) is just

an additive constant in the maximization problem.

The third term measures the utility of quality, which is here simply given by

the total human capital of the o®spring (L +Ht+1). This formulation could be

interpreted as a reduced form of an old-age security motive for rearing children,

as in Nishimura and Zhang (1992), and LagerlÄof (1997).

Alternatively, one could set up a \dynastic" utility function, where the parent

cares about the total welfare of the children, but that would complicate matters

due to the non-negativity constraint on ht, which would make the value function

non-di®erentiable. [A related problem has been pointed out by Tamura (1996,

Footnote 11).]

Letting the weight on quality be written as ®± is simply for notational conve-

nience.

Maximizing (2.14) over the number of births (Bt) tells us that

Bt =
µ
®

1 + ®

¶
1

v + ht
, (2.15)
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i.e., time spent on children, (v + ht)Bt, is a constant fraction of the unit time

endowment, following from the logarithmic utility.

There is an alternative interpretation of mortality in the model. Say there is

no child mortality, so all children born also enter the second phase of life. Let Tt
instead denote the remaining length of life for agent t as she enters adulthood.

This cannot exceed the length of the period, which is normalized to unity, so the

restrictions in Assumption 1 still apply. The budget constraint for time in (2.3) is

now written Tt = lt+(v+ht)Bt, and the optimal number of births of agent t (which

also equals the number of surviving children) becomes identical to (2.15) except

that the unit time-endowment is replaced by Tt. Thus, the number of surviving

children is still BtTt. With this interpretation, falling mortality (increased Tt)

expands the amount of time available for the parent, and thus the number of

births. This formulation is the same as that of Morand (2000). In the remainder

of this paper we shall instead stick to the child-mortality interpretation.

The ¯rst-order condition for ht tells us that

ht ¸
1

1¡ ±

·
v(± ¡ ½) ¡ L

A(Pt)(L+Ht)

¸
. (2.16)

The weak inequality in (2.16) follows from the non-negativity constraint on

ht: if the right-hand side of (2.16) is negative ht = 0 (and the inequality is strict);

otherwise (2.16) holds with equality. Recall that we are assuming 1 > ± > ½, so

that sustained growth in Ht, and/or Pt, must make ht operative at some stage

(see below).

As long as education time is operative (not constrained to zero) it increases

with the marginal return to human capital investment [A(Pt)(L+Ht)]. This hinges

on the biological endowment of human capital (L) being positive, since | with

logarithmic utility | the return would otherwise not a®ect the optimal amount

invested. Here, an increase in the return decreases the \discounted" value of L

(the value of L expressed in time). This causes a positive relationship between
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the return to education [A(Pt)(L+Ht)] and optimal education time (ht).

2.5. Dynamics

An important ingredient in our model is the stochastic epidemic shock !, but to

understand the mechanisms driving the results it is useful to start by thinking

of economies with ! being constant over time: either high or low. It turns out

that a high-! country can be stuck in a Malthusian steady state, whereas a low-!

country will follow a path leading to an industrial revolution. Once we have seen

that, we can start to think about the dynamics of an economy which randomly

switches between ! being high and low. This is examined in Section 2.8.

In period t, Pt adult individuals each have BtTt surviving children who become

adults in the next period. Thus Pt evolves dynamically according to

Pt+1 = PtBtTt. (2.17)

We distinguish between two situations: one where education time is con-

strained to zero (ht = 0), and one where it is operative (ht > 0). The ¯rst case

prevails during the Malthusian, and (as the dynamics evolve) Post-Malthusian

Regimes; the second during the Modern Growth Regime. From (2.16) we see that

ht > 0 if

A(Pt)(L+Ht) >
L

v(± ¡ ½) , (2.18)

and ht = 0 otherwise. In Figures 2.1 and 2.2 the non-negativity constraint on ht
is binding in the area below the dashed curve; above it is not binding. The dashed

curve need not be shaped the way we have drawn it, but its slope is negative.

2.6. The dynamic system when ht = 0

Consider ¯rst the case where education time is constrained to zero. Setting ht = 0

in the human capital production function (2.10), we can write
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Ht+1 = A(Pt) [L+Ht] ½v. (2.19)

The dynamics of Pt is given by (2.17): Pt+1 = PtBtTt. The birth rate Bt is

given by (2.15), with ht = 0. The survival rate Tt is given by in (2.4). This gives:

Pt+1 = PtBtTt = Pt
µ
®

1 + ®

¶ T
³
Ht
Pt
; !

´

v
. (2.20)

(Recall again that Rt = Ht=Pt.) We now have a two-dimensional system of

di®erence equations: (2.19) and (2.20). We analyze it in the phase diagrams in

Figures 2.1 and 2.2. In a standard fashion, we begin by deriving the loci along

which human capital and population are constant.

2.6.1. The (¢Ht = 0)-locus when ht = 0

Imposing Ht+1 = Ht in (2.19) we can write the (¢Ht = 0)-locus as

Pt = A¡1
µ

Ht
½v [L+Ht]

¶
. (2.21)

When Pt exceeds the right-hand side of (2.21) Ht is growing over time, and

when Pt is less than the right-hand side of (2.21) Ht is falling. When Ht is

su±ciently small, it will always grow over time, since A(Pt) is bounded from below

[see (2.13)]. This implies that the (¢Ht = 0)-locus has a horizontal intercept.

Clearly, the ¢Ht = 0 locus slopes upwards since

dPt
dHt

j¢Ht=0=
L

½vA0(Pt)

µ
1

L+Ht

¶2

> 0. (2.22)

Figures 2.1 and 2.2 show the (¢Ht = 0)-locus sloping upwards (below the

dashed curve, where ht = 0), and with a horizontal intercept. (We have drawn it

concave, but it need not be.) As shown by the arrows, human capital is growing

above the (¢Ht = 0)-locus, and falling below it.

19



0=∆ tP

0=∆ tH

tH

tP

M

Figure 2.1: Below the dashed line ht = 0, and above ht > 0. This diagram

illustrates the case when ! is high (a severe epidemic shock). There is a locally

stable Malthusian steady-state equilibrium (point M ), as well as a path which

eventually leads to an industrial revolution when the (ht = 0)-locus is intersected.
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0=∆ tP

0=∆ tH

tH

tP

Figure 2.2: Below the dashed line ht = 0, and above ht > 0. This diagram

illustrates the case when ! is low (no, or small, epidemic shock). The economy

will always follow a path which intersects the (ht = 0)-locus at some stage, leading

to an industrial revolution.
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2.6.2. The (¢Pt = 0)-locus when ht = 0

At a given epidemic shock !, (2.20) tells us that the population is constant when

the ratio Rt = Ht=Pt is such that [®=(1 + ®)]T (Rt; !)=v = 1. This gives the

(¢Pt = 0)-locus as a straight line (below the dashed curve, where ht = 0), as

drawn in Figures 2.1 and 2.2. [The linearity of the (¢Pt = 0)-locus comes from our

speci¯cation of the survival function T (Rt; !), which depends only onRt = Ht=Pt.

With a more general form the (¢Pt = 0)-locus would still be sloping upwards.] As

shown by the arrows, population grows in the region below the (¢Pt = 0)-locus,

and falls above it.

The slope of the (¢Pt = 0)-locus depends on the realized shock !. A high !

(a severe epidemic) implies that the ratio of human capital to population must

be relatively high for population to be constant, compared to when ! is low.

Therefore, a high ! makes the (¢Pt = 0)-locus °atter. [Since we have Pt on the

vertical axis, the slope equals Pt=Ht, i.e., the inverse of Rt = Ht=Pt.] Another

way of seeing the same thing is to note that a rise in ! shrinks the region in which

population is growing.

2.7. The dynamic system when ht > 0

Above the dashed curve in Figures 2.1 and 2.2, education time is operative, and the

dynamics of the human capital stock is derived from the human capital production

function (2.10), substituting for the optimal ht, as given by (2.16) holding with

equality. After some algebra, this gives

Ht+1 =
v±(1¡ ½)A(Pt) [L+Ht] ¡ L

1¡ ± . (2.23)

Similarly, after substituting the expression for optimal ht in (2.16) into the

expressions for the birth rate in (2.15), some algebra tells us that
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Bt =
µ
®

1 + ®

¶
(1¡ ±)A(Pt) [L+Ht]

v(1¡ ½)A(Pt) [L+Ht] ¡ L
´B(Ht; Pt). (2.24)

From (2.24) and (2.17) the population dynamics can be written

Pt+1 = PtB(Ht; Pt)T(Ht=Pt;!), (2.25)

where B(Ht; Pt) is de¯ned in (2.24).

We now have a new two-dimensional system of di®erence equations: (2.23)

and (2.25). To analyze the dynamics, we start by deriving the loci along which

Pt and Ht are constant.

2.7.1. The (¢Ht = 0)-locus when ht > 0

Setting Ht+1 = Ht in (2.23), and solving for Pt, we can write the (¢Ht = 0)-locus

as

Pt = A¡1
½
L+ (1¡ ±)Ht
v±(1¡ ½) [L+Ht]

¾
. (2.26)

The slope of this locus is negative:

dPt
dHt

j¢Ht=0=
¡1
A0(Pt)

µ
1

v±(1¡ ½) [L+Ht]

¶2

±2v(1 ¡ ½)L < 0, (2.27)

as we have drawn it in the diagrams in Figures 2.1 and 2.2, where we also note

that the locus converges to A¡1
³

(1¡±)
v±(1¡½)

´
as Ht goes to in¯nity (which may, or

may not, be positive, as we have drawn it). Positions above this locus imply

growing levels of human capital, and positions below imply falling levels.

It is easy to verify that the (¢Ht = 0)-locus in the region where ht > 0, must

coincide with the corresponding locus when ht is constrained to zero, at exactly

the point where these loci intersect the dashed curve in Figures 2.1 and 2.2. If the

unconstrained choice of ht equals exactly zero, the economy behaves as if ht ¸ 0

was binding.
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2.7.2. The (¢Pt = 0)-locus when ht > 0

From (2.25) we see that population is constant when

B(Ht; Pt)T(Ht=Pt; !) = 1. (2.28)

This implicitly de¯nes the (¢Pt = 0)-locus. First note that it must coincide

with the corresponding (¢Pt = 0)-locus for the case when ht = 0 exactly on the

dashed line, where the constraint ht ¸ 0 is on the border of being binding. In

other respects, the precise shape of the (¢Pt = 0)-locus depends on the form of

the functions A(Pt) and T (Ht=Pt; !). The way it is drawn in Figures 2.1 and 2.2

is one example.

However, we can say something about how this locus slopes asymptotically.

Letting Ht go to in¯nity in (2.24) we get

lim
Ht!1

B(Ht; Pt) =
µ
®

1 + ®

¶
1 ¡ ±
v(1¡ ½) ´ B¤. (2.29)

Sustained growth in human capital will eventually cause the birth rate to

converge to B¤ in (2.29). [Note that A(Pt) is bounded from below by bA in (2.13),

so A(Pt) [L+Ht] will go to in¯nity if Ht does.] Another way of deriving B¤ is

to let Ht go to in¯nity in the expression for education time in (2.16), and then

substitute the resulting expression into the expression for the birth rate in (2.15).

Asymptotically, the slope of the (¢Pt = 0)-locus is thus de¯ned by the ratio Pt=Ht
which makes T(Ht=Pt; !) = 1=B¤. Since T(Ht=Pt; !) < 1, B¤ must exceed one

for there to exist some asymptotically constant ratio Ht=Pt along which ¢Pt = 0.

We therefore assume:

Assumption 3.
¡
®

1+®

¢
1¡±
v(1¡½) ´ B¤ ¸ 1.

Section 3 discusses the implications of B¤ < 1.
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2.8. The full transition through the three regimes

To understand the dynamics, we can think of an economy which has a constant

level of ! over time: either high (constantly hit by severe epidemics), or low

(with epidemics virtually absent). Consider ¯rst the phase diagram in Figure

2.1. This illustrates the situation of an economy where ! is high. In the lower

part of the diagram (below the dashed line, where ht = 0), the (¢Pt = 0)-

locus intersects the (¢Ht = 0)-locus twice. The low intersection, marked M,

constitutes a locally stable steady-state equilibrium: if the economy is situated

near M it will converge to M (of course, given that ! is kept constant). This

is a Malthusian equilibrium, in the sense of e.g. Galor and Weil (1999, 2000).

The mechanism which equilibrates the economy is the increased mortality e®ect

of a larger population: if population density increases, so that the economy ends

up above the (¢Pt = 0)-locus, the mortality rate goes up, and the population

is thus reduced until the economy goes back to M. In Figure 2.1 there is also a

path with growing levels of population and human capital. An economy following

that path will eventually intersect the dashed line. That is where education time

(ht) becomes operative, so that human capital starts growing faster and the birth

rate falls: the economy experiences an industrial revolution and a demographic

transition.

Consider next the case where epidemic shocks are virtually absent (! is small).

This is illustrated in Figure 2.2. Here the (¢Pt = 0)-locus never intersects the

(¢Ht = 0)-locus. There is no Malthusian trap. The only path is the one leading

to an industrial revolution.

Now think of an economy which randomly switches between ! being high and

low. Having long been in a state with frequent epidemics (high !) the economy

is situated somewhere near the Malthusian trap, point M in Figure 2.1. Then

! suddenly falls. The (¢Pt = 0)-locus becomes steeper, as in Figure 2.2. This

enables population and human capital to start growing. As more human capital
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builds up mortality falls and population expands. Higher population density raises

human capital productivity [A(Pt)], and so the cycle feeds back into itself. In the

absence of any further epidemics, the economy would be heading safely for an

industrial revolution as it intersects the dashed line. But consider what happens

if the economy is hit by a new epidemic wave (! rises again). The (¢Pt = 0)-locus

then becomes °atter again, as in Figure 2.1.

If the economy has reached a position beyond the threshold saddle path in

Figure 2.1 it will not contract back to the Malthusian trap. As it continues to

accumulate more human capital it can become safe from even the worst epidemic

shocks, as the impact of these shocks falls with the level of human capital. (This

hinges upon human capital growing faster than population; see below.) If the

economy has not reached a safe position when the new epidemic comes, it will

contract back to the Malthusian trap. The mortality increase could be extra

severe, due to the higher population density [see (2.7)]. At the same time, the

human capital accumulated will help mitigate this e®ect.

For an industrial revolution (and the associated demographic transition) to

take place the economy must be spared from epidemic shocks long enough. This

explains how it can be stuck in aMalthusian trap for very long, and then suddenly

escape. Once it escapes, it will ¯rst experience population and human capital

growing simultaneously, as in Figure 2.2 in the area below the dashed line. This

is the Post-Malthusian Regime of Galor and Weil (1999, 2000). Note that in the

Post-Malthusian Regime population growth comes from falling mortality rates.

Birth rates remain unchanged, since education time (ht) is constrained to zero

[see (2.15)].

When the trajectory intersects the dashed line the economy transits into what

Galor and Weil (1999, 2000) call the Modern Growth Regime. This is charac-

terized by an increased growth rate of human capital, and a fall in birth rates

and population growth rates. Both e®ects come from education time becoming

operative (ht becoming positive). Human capital grows faster because education
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is an input in human capital production [see (2.10)]. At the same time, increased

education time makes children more expensive, which induces a fall in birth rates

[see (2.15) again]. This is a standard quality-quantity switch.

The positive growth e®ects of education time becoming operative has some

empirical support. In Britain education started to increase at the same time

as growth rates did. The average years of schooling started to increase with

the cohort born around 1800, and was later followed by sharp increases in the

proportion of the male population with a university degree, starting with the

cohort born in the 1880's. [See Matthew, Feinstein and Odling-Smee (1982, Ch.

4).]

As long as human capital grows at a faster rate than population our model

predicts that the impact of the epidemic shocks tend to vanish over time, asHt=Pt
goes to in¯nity [see (2.8)]. This is consistent with data: during the demographic

transition, not only the level of death rates fell, but also their volatility. Note

that, in our model and probably in the real world too, the distribution of the

epidemic shocks is constant over time. Only the way in which the mortality rates

respond to the shocks change.

Using the production function for human capital (2.10), and letting population

go to in¯nity in (2.12), the (gross) growth rate ofHt in theModern Growth Regime

becomes

°¤H ´ ±vA
¤(1 ¡ ½)
1¡ ± . (2.30)

The growth rate of population is given by B(Ht; Pt)T(Ht=Pt; !) [see (2.25)].

If Ht=Pt goes to in¯nity, and the mortality rate 1¡ T(Ht=Pt; !) goes to zero, the

population growth rate will asymptotically become identical the birth rate B¤ in

(2.29). Does it actually hold that Ht=Pt goes to in¯nity? To make this conjecture

true we must assume that °¤H > B¤, i.e.,

Assumption 4. ±vA
¤(1¡½)
1¡± >

¡
®

1+®

¢
1¡±
v(1¡½) .
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Note that Assumptions 3 and 4 together imply that human capital exhibits

sustained growth (°¤H > 1).

We need to make sure that all the assumptions we have made so far can hold

simultaneously. To do this the next section sets up functional forms for T (¢) and
A(¢) that satisfy Assumptions 1 and 2. We then calibrate the growth rates of Ht
and Pt to realistic levels for modern economies (which also satisfy Assumptions 3

and 4), and simulate the model with epidemic shocks.

2.9. Simulations

We let the parametric form for A(Pt) be

A(Pt) = A¤ ¡ eA+ eA
µ
Pt
´ + Pt

¶
, (2.31)

where ´ > 0 is an exogenous parameter, and A¤ ¡ eA > 0 corresponds to bA in

(2.13). Clearly, (2.31) satis¯es Assumption 2.

We let the parametric form for T(Ht=Pt; !) be given by

T (Ht=Pt; !) =
µ

Ht
!Pt +Ht

¶¾
, (2.32)

where ! > 0 is the stochastic epidemic shock, uniformly distributed on [!; !], and

¾ > 0 is an exogenous parameter. Clearly, (2.32) satis¯es Assumption 1.

As numerical values we choose those listed in Table 2.1. These are chosen

to satisfy all assumptions made so far. A number of further restrictions were

imposed to shape the (¢Pt = 0)- and (¢Ht = 0)-loci the way they are drawn in

Figures 2.1 and 2.2. The values of ! and ! were chosen to make an escape from

the Malthusian trap possible for !, but not for !.

We also set the parameter values to give growth rates of output per capita

and population in the Modern Growth Regime in the vicinity of what we see in

most modern in economies today. Letting each period correspond to 35 years,
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½ ± ® v D L A¤ eA ! ! ¾ ´

0.9982 0.9987 0.0389 0.025 1 1 82.11 44.16 0.0496 0.0679 1 10000

Table 2.1: Parameter values

human capital growth (which can be interpreted as per-capita income growth) is

calibrated to 3% per annum. The population growth rate is calibrated to 0.25%

per annum.9

The simulated annual growth rates of human capital and population are shown

in Figure 2.3. It replicates the three regimes of Galor and Weil (1999, 2000).

The ¯rst 120-130 generations experience low growth rates of both population and

human capital, with the population growth rate being very volatile. This is the

Malthusian Regime. Then both population and human capital simultaneously

start growing faster. Population growth also starts becoming less volatile. This is

the Post-Malthusian Regime. Then the economy enters its ¯nal phase, the Modern

Growth Regime: population growth drops to 0.25%, and human capital growth

spurts to 3% (as we have calibrated them). As seen, this happens simultaneously

with an increase in education time (ht).

Figure 2.4 shows the timing of the di®erent components of the demographic

transition: the annual birth and death rates.10 First mortality falls, while fertility

stays constant; then fertility falls, and mortality stabilizes. The phase where death

rates fall below birth rates is associated with the high population growth phase

in Figure 2.3. The picture is clearly consistent with the stylized facts about the

demographic transition described by e.g. Livi-Bacci (1997, Ch. 4).

One striking feature is the simultaneous fall in the volatility of mortality. This
9Using the numerical values in Table 2.1 and the expression for human-capital growth in

the Modern Growth Regime in (2.30) gives (approximately) (1:03)35, and similarly for the

population growth rate.
10The annual death rate is computed as 1 ¡ T1=35

t (i.e., one minus the annual survival rate),

and the annual birth rate as B1=35
t ¡ 1.

29



Figure 2.3: The three regimes simulated.
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Figure 2.4: Simulated birth and death rates.
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is what we see in the data for e.g. Sweden, as shown in Figure 1.1.11 It also holds

for 18th-century continental Europe, where death rates increased dramatically in

periods of epidemics and famines. Towards the second half of the 18th century,

as the industrial revolution took place, the mortality peaks °attened out. For a

further discussion of these facts, see Livi-Bacci (1997, p. 118), Maddison (1982,

pp. 50-52), and Easterlin (1996, pp. 7-9).

The levels of the birth and death rates are considerably lower in our simulation,

compared to the Swedish ¯gures in Figure 1.1. However, the data in Figure 1.1

refer to the total number of births and deaths, divided by total population. The

death rates for children aged between 5 and 15 were much lower, around 0:6|

1:3% in the 1750's. Infants and very old people had higher death rates, which is

what pulls the numbers up in Figure 1.1. [See Statistics Sweden (1999).] From

the view point of our model, 5|15 is probably the age group we should look at,

since that is when schooling decisions are made.

3. Conclusions

According to Galor and Weil (1999, 2000), on its way from stagnation to modern

growth, theWesternWorld has passed through three stages: a Malthusian Regime,

with almost constant levels of population and per-capita income, and a positive

relationship between per-capita income and population growth; aPost-Malthusian

Regime, with positive growth rates of both population and per-capita income, and

still a positive relationship between per-capita income and population growth;

and ¯nally a Modern Growth Regime, with even higher growth rates of per-capita

income, but lower growth rates of population, and the relationship between per-

capita income and population growth being negative. Galor andWeil (1999, 2000)

call for a model which can explain all three regimes in a uni¯ed framework. That
11However, in contrast to what we see in the Swedish data, the birth rate is °at in our model.

See the discussion in Section 3 below.
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is what our model does.

The following assumptions drive our results: we allow advances in medical

skills to reduce the impact on mortality of epidemics; we let population density

have the opposite e®ect, i.e. increasing the impact on mortality of epidemic

shocks; and we allow population density to have a positive e®ect on productivity

in the human capital sector. We also cite empirical evidence supporting these

assumptions.

Our model is capable of generating the transition through all the three regimes

endogenously. Through all regimes, the epidemic shocks hit the economy at the

same rate. However, with rising human capital the impact of them is mitigated.

The results are most easily seen in the simulated example in Figures 2.3 and

2.4. For many generations the economy is stuck in a Malthusian equilibrium with

volatile and high death rates. Sooner or later it experiences a phase of relatively

mild epidemics, so that mortality declines, enabling population and human capital

to simultaneously start growing. This is the Post-Malthusian Regime. Once

human capital growth has taken o®, the impact of further epidemics dies out.

Then at some stage a quality-quantity switch makes parents rear fewer children,

and start investing in their children's education. This also triggers faster growth

in human capital. The economy enters the Modern Growth Regime.

Let us go back to the questions posed in the beginning of this paper. Is the

industrial revolution inevitable? In our model: yes and no. Given that it is

feasible to escape the Malthusian trap by experiencing su±ciently many periods

with su±ciently mild epidemic shocks, the economy must escape at some stage.

It is just a matter of time and luck; the right conditions will arrive in ¯nite time.

The industrial revolution is in that sense inevitable (as is the Post-Malthusian

Regime preceding it). However, when simulating the model, we ¯nd that it can

take very many generations to get a growth take-o® | even when we choose

parameter values that make this theoretically certain at some stage.

So why did the industrial revolution start in Europe, and not the Americas or
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Australia? According to Jared Diamond (1999), in his best-seller \Guns, Germs,

and Steel," epidemics are indeed part of the answer. [See also McNeill (1976).]

When colonizing these lands, Europeans brought with them crowd diseases against

which the native inhabitants were less resistant. The reason why Europeans had

developed so many more crowd diseases is in part its frequent trade contacts across

the Eurasian continent (see below). In comparison, the densely populated areas

in the Americas (the Andes, Mesoamerica, and the Mississippi Valley) were not

connected at all. Butmore important, according to Diamond, was the fact that the

Americas and Australia had fewer domesticated animals than Europe. It is from

such livestock which many deadly microbes have jumped the species barrier onto

humans. The low number of domesticated animals in the Americas and Australia

is in turn due to a lack of animals suited for domestication. In terms of our model,

one could say that the native Americans were originally quite lucky. Thanks to

an exogenously smaller endowment of animals to domesticate they were spared

from epidemics. Of course, when the Europeans arrived the situation changed, as

the natives lacked immunity against the new European diseases. However, had

Columbus never set sail in the late 15th century maybe we could have seen an

industrial revolution in the Americas.

But why did the industrial revolution not start in China or India? From the

point of view of our model we could think of Eurasia as one economy, especially

from around 1300, when Eurasian population density was su±ciently high to fa-

cilitate contacts and travels across the continent (by land, initiated by the Mongol

Empire, and by sea, initiated by the Europeans). This increased the spread of

ideas (which can be thought of as the endogenous e®ect from population density

on human capital productivity in our model). However, it also turned the conti-

nent into one gigantic germ pool, easing the spread and worsening the impact of

epidemics (which can be thought of as the endogenous e®ect from population den-

sity on mortality in our model). The Black Death in Europe 1346-50 is the most

well-known example. Still, there were some local epidemiological di®erences across
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Eurasia. India was worse o® than China and Europe due to its climate being more

suitable for diseases to develop and spread. [See McNeill (1976, pp. 106-107).]

This may have made the necessary population and human-capital growth take-o®

harder to sustain. China did not have a disadvantageous climate, but may simply

have been hit by worse shocks. China's population was almost constant through-

out the 17th century, associated with a documented increase in epidemics. During

the same time period, Europe (in particular Britain) experienced comparatively

mild epidemics, and higher population growth. [See McNeill (1976; pp. 228-229

for China and p. 142 for Britain).]

The birth rate in our model is constant (up until the increase in education

time), whereas in the data it is volatile (though not as volatile as the mortality

rate; see Figure 1.1). One way to extend our model to include birth rate volatility

could be to allow for shocks to output (e.g. the parameter D in our model).

These could correspond to famines and bad harvests. One would then also have

to specify a consumption goods cost of having children, because with only a time

cost and logarithmic utility (as in our present setting) any shock to output would

be neutral to birth rates, since the income and substitution e®ects cancel out.

A 10% fall in income means a 10% fall in the time cost of children, and would

leave the birth rate unchanged [see (2.15)]. We believe formulating a model which

can explain both birth and death rate volatility should be an interesting task for

future research.

Assumption 3 ensures that the birth rate asymptotically approaches something

positive as human capital grows. With a zero mortality rate a positive birth rate

is required for positive sustained population growth. But birth rates are very low

in many European countries today, even below replacement levels. What happens

if we allow for such low birth rates in our model? In terms of the phase diagrams,

it can be seen that if B¤ falls below unity, the (¢Pt = 0)-locus will eventually

start sloping downwards and intersect the horizontal axis. This would either lead

to population dying out, while an \imaginary" human capital stock still kept
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growing [recall that human-capital productivity goes to bA when Pt goes to zero;

see (2.13)]; or it would make Ht and Pt stabilize at some non-growing levels. The

¯rst scenario we should think has no empirical relevance; the second contradicts

our belief that the last few century's sustained growth will never die out. We

impose Assumption 3 to ensure that none of this happens, and let readers 1000

years from now be the judges of whether, or not, this was a good guess.
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